¿Enseñamos a pensar?¿Pensamos?

Publicado: 10 febrero, 2018 de Pepe E. Carretero en Uncategorized
‘Enseño a Pensar’ de José María Martínez Beltrán de la Editorial Bruño.
45251334
 
Son de esas cosas que pasan, mi compañero y amigo Ángel Sevilla Arispón, aun en el siglo XX, el 2000 fue el último año del XX, me prestó este libro qué él firmó en abril de 1997, me prestó y no se lo devolví, son esas cosas que pasan.
 
El libro me acompaña desde primeros de enero, cayó en mi maleta y lo repaso de vez en cuando. Hoy me gustaría cambiar su título, simplemente añadiendo dos símbolos de interrogación, ¿Enseño a Pensar? y hecho esto me planteo otra cuestión previa ¿Pienso?
 
Kolo, el director del CEIP Rufino Blanco de Encinasola, Huelva, en otro orden de cosas fue el que me suscitó esta pregunta. ¿Cómo enseñar a pensar si yo no pienso?
 
Dentro de los ‘pensares’ me quedo en el pensamiento crítico, no el pensamiento contrario, algo que frecuentemente se confunde, el crítico. El que me permite diseccionar aquello que se me presenta e intentar componer un discurso propio basado en las informaciones que recibo.
 
Nos es muy habitual en los tiempos que corren proceder de este modo, todo va rápido, tus opiniones cambian al ritmo del ‘trino’ del gorrión de Twitter, funcionamos a golpe de titular y de tendencias, la necesaria parada previa a la reflexión y la construcción de un argumento es un lujo que no estamos dispuestos a pagar en estos días.
 
Sin embargo en estos días, coincidiendo con los que el libro está en mi maleta, me encuentro en plena parada aun no tengo ni perfilado un esbozo de argumento, me distraigo e indirectamente recibo demasiadas influencias que no me permiten llegar a conclusiones claras, de hecho no sé si alcanzaré alguna, tal vez no sea necesario, pues ya todos han decidido por mi y por casi todos, realmente.
 
Espero que no se nos vaya de las manos, el precio a pagar por equivocarnos con el modelo educativo que diseñemos y que ejecutemos será muy alto y tendrá consecuencias muy negativas a muchos años vista. ¿Sabemos realmente lo qué queremos? ¿Lo hemos pensado?, si realmente es así y estamos convencidos de que es bueno, ¿seremos capaces de desarrollarlo? ¿nos cansaremos con los primeros inconvenientes?
 
Cuestiones a tener tener en cuenta en el proceso:
 
¿Los principios LOGSE se consideran ‘Escuela Tradicional’?, ¿cuál es la percepción de la LOGSE?, ¿o de la LOE?, ¿qué hay detrás de la sensación de ‘idiotización’ de la sociedad que se ha forjado los últimos años?, ¿tiene culpa el modelo o los ejecutores del modelo?, ¿el trabajo por competencias clave cambiará, no solo esas percepciones, si no el modelo de sociedad actual? ¿será para mejor? ¿lo hicieron las competencias básicas?, …
 
Conclusiones a las que ya he llegado.
Hay poco que hacer en el diseño del modelo. Viene impuesto de forma vertical, curioso ¿no? La OCDE decidió, la sociedad tecnológica en la que vivimos nos obliga a la ‘practicidad’, perdón por la palabra, basándose en los ‘éxitos’ económicos cosechados por las sociedades ‘occidentales’ surgidas tras la Segunda Guerra y la aparición de la ONU.
Debemos ser tecnológicamente competentes, centrarnos en la funcionalidad de los saberes, y está bien, pero quedarnos ahí nos convertirá en autómatas, sin capacidad critica, sin capacidad de abstracción, sin pensar.
Pues nada, en esas estamos.

Cosas de las Tareas

Publicado: 22 enero, 2018 de Pepe E. Carretero en Debate, Viñetas
Etiquetas:,

Se trata sencillamente de esto. Un proyectito, desarrollado a través de tres tareas. Un esquema sencillo de UDI es algo más o menos así. Sí, hay que desarrollar más la transposición didáctica, cambiar objetivos por criterios, etc. Pero se trata de saber qué hacer en el Aula y aquí Carmen Caparrós, Asesora del CEP Marbella-Coín lo expresa muy bien.

976574FD-6229-410B-89D3-08FE10B4051C

 

¿Cómo debe ser la selección? Miguel de Guzmán Ozámiz

Publicado: 30 diciembre, 2017 de Pepe E. Carretero en Problemas
Etiquetas:,

Cuando trabajaba en Sevilla, un par de veces creo recordar, asistí a unas charlas sobre el programa ESTALMAT (Estimulación del Talento Matemático precoz)

Me gustaba el programa, ahora, desde que me retiré a los “Picos”, le tengo perdida la pista, espero que el enfoque no haya cambiado mucho pues era de lo mejorcito que en formación matemáticas había.

ESTALMAT no es el tema que me ocupa en esta entrada. Como decía asistí a varias reuniones donde nos explicaban las características del programa con el fin de que ‘detectásemos’ en nuestros centros ese ‘talento’ matemático a desarrollar posteriormente por ellos.

historia5_02-guzman-caricatura-web.jpg

En una de mis viejas libretas que hoy ha aparecido mientras removía mis estanterías, entre garabatos y notas que hoy no les encuentro ningún sentido, alguno tendrían en su tiempo, me encontré una lista, a modo de receta, de las ‘Características deseables de los problemas de una prueba de selección’. Autor, Don Miguel de Guzmán, profesor. El dueño de la silla del bajo título de este pequeño campo de entrenamiento.

Hoy tiempo de sesudos expertos, gurús de la neurociencia y guardianes de las ‘metodologías innovadoras’ poca o ninguna alusión hacen del viejo profesor, que nos dejó allá por el 2004, dejando esa silla vacía que aun hoy sigue vacante en lo que a educación matemática se refiere.

Sean sus directrices las que me sirvan de enésimo homenaje a quién es uno de los grandes ‘culpables’ de que decidiera hacer de la docencia matemática una forma de vida.

Características deseables de los problemas de una prueba de selección:

Que primen aptitud y actitud y no tanto conocimientos.Que sean variados (pensamiento visual, pensamiento lógico, intuición, creatividad, abstracción, manipulación matemática, capacidad de ordenación del pensamiento….)Que sean graduales. Varias cuestiones de fácil a difícil. Que cada uno pueda hacer algo y no sentirse frustrado, pero que ayuden a discernir quienes son los mejores.Que el enunciado no sea excesivamente complicado y que estén redactados con mucha claridad. La dificultad no debe estar en enterarse de qué va el problema.

Que en lo posible sean originales de modo que los “preparados” no tengan una clara ventaja por haber visto cosas muy semejantes.

Jugando con monedas

Publicado: 29 diciembre, 2017 de Pepe E. Carretero en Matejuegos
Etiquetas:,

Triángulo con monedas

Forma un triángulo con 10 monedas iguales como el de la figura. Moviendo sólo 3 de ellas forma otro triángulo equilátero en diferente posición.

 

Galois, bajo la mirada hilarante de los ‘Tortulianos’

Publicado: 28 diciembre, 2017 de Pepe E. Carretero en Mundo Matemático, Tusitala
Etiquetas:,

“El duelista demanda satisfacción, pues el honor para él es apetito.”

Galois-2.jpg

Las casualidades son así. El otro día redactando la entrada anterior apareció Evaristo Galois, cierto que en el blog hay alguna que otra entrada dedicada a él, pero hete aquí que dedicando un ratillo a otras de mis aficiones, la historia, me aparece este podcast dedicado a él.

Galois Mugs

A estos ‘locos’ uruguayos de La Tortulia Podcast los tenía en la recámara  a la espera de tener un poco de tranquilidad y escuchar sus audios.

Son geniales, cuesta, algunas veces, entenderlos pues cuando cogen carrerilla enlazan palabras a la misma velocidad de la luz, no es el caso en este corte.

En cualquiera de los casos es una manera fresca, alejado del corsé academicista, de acercarse a su muerte, Galois se hizo grande gracias a las últimas horas de su vida. No cuento nada más, disfrútenlo.

 

La Tortulia #16 – Duelos: Evariste Galois

La Paradoja de Sancho Panza

Publicado: 28 diciembre, 2017 de Pepe E. Carretero en Matejuegos, Tusitala

Como buen universitario siempre andaba escaso de dinero. Una forma sencilla de hacerse con algunos duros eran las manidas clases particulares de matemáticas de BUP y COU. Manidas sí, pero cubrían el expediente.

Cuando le fui cogiendo un poco de coraje a las discusiones sobre cual es o no la definición de cóncavo y con(b)exo y algo de soltura a las mates superiores pasé al alumnado universitario de aplicadas, pero el salto de calidad fue cuando descubrí el álgebra de segundo curso. El ÁLGEBRA DOS, así de rotundo. ¡Qué cosa fuera!

En el primer cuatrimestre, de mi año claro, eso lo rifaban los arcanos del mega departamento de Álgebra, Geometría, Topología, Computación y Arquitectura de los Ordenadores, ¡toma ya!, de corrido y sin trompicones. Como decía el primer cuatrimestre lo dedicábamos a Galois, ¡que historia!, algo tengo publicado de él anteriormente, pero lo de Evariste Galois es un dramón de los antiguos. Buscad por ahí si no conocéis la historia.

Galois.jpg

Solo el hecho de descubrir a Galois y resolver un par de ecuaciones de tercer y cuarto grado merecía la pena cursar esa materia, pero lo mejor estaba por llegar. Quién se haya batido el cobre con la teoría de conjuntos del segundo cuatrimestre de aquella bendita materia podrá expresar la fascinación que producía. En principio fascinación, luego … amargura, desesperación, impotencia, conductas paranoides,…

Ahí aparecí yo. Se me dio bien el invento de la teoría de conjuntos, cosa que pasados quince o veinte años, sin entrenamiento previo y a dolor puede demostrar en el Máster de Matemáticas de la US, testigos tengo, “Pictolín” puede dar fe de ello. Vi la oportunidad y decidí aprovechar la coyuntura, organicé la materia, busque donde dar las clases, los alumnos y poco más. El negocio funcionó y durante dos años acompañé, como dicen ahora los “modernitos”, a los desdichados cadáveres que tan temida criatura iba dejando en las cunetas.

Gané dinero, supongo que lo gastaría en bastante menos tiempo del que me costó conseguirlo, pero me quedé con aquella fascinación que a todos nos embargaba cuando escuchamos “Conjunto”, “Axioma de la Elección”, “Gödel”, “Inconsistencia”, …

Recuerdo aquella pregunta que José Antonio, nuestro profesor nos hizo el primer día de clase: “¿cómo definirías un conjunto?” Todos pensábamos:  “¿qué pregunta más tonta?” Al cabo de unos minutos nuestra seguridad caía por los suelos. O tal vez su reputación, Se  iniciaba una retahíla de nombres Frege, Russell, lógica matemática…

Y la “Paradoja del barbero”. Al final, más de uno terminábamos preguntándonos que pinta un barbero con los conjuntos en la clase de álgebra; otros se quedan con la dificultad de resolver la paradoja y a unos pocos les sigue martilleando la pregunta: ¿qué es un conjunto? Que al fin y al cabo era la intención última, seguro, de Don José Antonio Alonso.

Por mi parte decidí, humildemente hacer una variación. Cambié la paradoja del barbero por otra más del terreno, con la que pretendía producir el mismo resultado. Y qué más “de aquí” que nuestro Sancho Panza y un problema que planteaba Alejandro Casona en su obra Sancho Panza en la ínsula Barataria.

Sancho

En la obra, a Sancho le plantean el siguiente problema:

En el camino de entrada a la ínsula hay una horca, cada vez que una persona quiere entrar se le pregunta a dónde va. Si contesta la verdad se le deja pasar, pero si contesta una mentira se le ahorca.

Por tanto tenemos dos conjuntos, aquel formado por las personas que entran en la ínsula y el formado por los ajusticiados. Obviamente cada persona que desee entrar sólo puede ir a uno de los conjuntos. Volvamos a Sancho y la duda que le suscita el mayordomo.

El dilema nos apareció el pasado día, cuando uno de los viandantes contestó ante la pregunta: voy a morir en esa horca. ¿Qué hacemos con él?

Si lo trasladamos a nuestros conjuntos… ¿en qué conjunto meteríamos a ese ciudadano?

La paradoja es análoga a la del barbero, pero no me negarán que esta la podemos esgrimir como más… dejémoslo en literaria.

Por cierto, ¿cuál fue la respuesta de Sancho?

Contar

Publicado: 25 diciembre, 2017 de Pepe E. Carretero en De mis viejas agendas

“Contar, hasta ayer no me di cuenta que llevar la cuenta se pueda convertir en uña ejercicio de escape.

contar pasos, contar curvas, latidos. Contar lentejas negras, incluso golpes de manecillas de reloj.

Tras cinco años de estudios y para diez de profesión, ayer me di cuenta que no sabía contar.”

Minas de Riotinto, algún día de 2006.

¿Hay alguien aquí?

Publicado: 3 agosto, 2015 de Pepe E. Carretero en De Claro
Etiquetas:,

 

20140414-102631.jpg

Imagen  —  Publicado: 14 abril, 2014 de Pepe E. Carretero en Matimágenes
Etiquetas:

PIPAS / πpas / 3.1416… / Corto sobre el fracaso educativo y la importancia del aprendizaje.

Avalada por diferentes premios y conocimientos, Pipas refleja la importancia de aprender y muestra el fracaso escolar de la sociedad a través de la mirada de dos chicas jóvenes.

Ganador de los premios al mejor Guión y a la mejor dirección en la XI Edición del Notodofilmfest

Protagonizado por Marta Martín y Saida Benzal

Guión y Dirección Manuela Moreno

Foto: Jon Corcuera

Productora: MOMENTO

Más info: cortopipas.blogspot.com.es/

Vídeo  —  Publicado: 14 abril, 2014 de Pepe E. Carretero en Video
Etiquetas:,